4D To exploring various commands for doing description analysis on the Iris data set

import pandas as pd
import matplotlib.pyplot as plt
from pandas.api.types import is_numeric_dtype
data = pd.read_csv("Iris.csv ")
print(data.sample(5))
print(data.columns)
#The first one is the number of rows and
# the other one is the number of columns.
print(data.shape)
print(data[10:14])
print('INDEX :',data.index)
# sorting by an axis
print(data.sort_index(axis=1, ascending=False).head(10))
for col in data.columns:
    if is_numeric_dtype(data[col]):
        print('%s:' % (col))
        print('\t Mean = %.2f' % data[col].mean())
        print('\t Standard deviation = %.2f' % data[col].std())
        print('\t Minimum = %.2f' % data[col].min())
        print('\t Maximum = %.2f' % data[col].max())

print('value count\n',data['Species'].value_counts())
print('DESCRIBE\n',data.describe(include='all'))
boxplot = data.boxplot(column=['SepalWidthCm', 'PetalWidthCm'])  
plt.show()
data.hist()
data.plot(subplots=True)
data.plot(y='SepalWidthCm');